Optimized integrating factor technique for Schrödinger-like equations
نویسندگان
چکیده
The integrating factor technique is widely used to solve numerically (in particular) the Schrödinger equation in context of spectral methods. Here, we present an improvement this method exploiting freedom provided by gauge condition potential. Optimal conditions are derived considering and temporal numerical resolution with adaptive embedded scheme arbitrary order. We illustrate approach nonlinear (NLS) Schrödinger–Newton (SN) equations. show that optimization increases significantly overall computational speed, sometimes a five or more. This gain crucial for long time simulations, as, larger steps, less computations performed accumulation round-off errors reduced.
منابع مشابه
Stochastic differential equations and integrating factor
The aim of this paper is the analytical solutions the family of rst-order nonlinear stochastic differentialequations. We dene an integrating factor for the large class of special nonlinear stochasticdierential equations. With multiply both sides with the integrating factor, we introduce a deterministicdierential equation. The results showed the accuracy of the present work.
متن کاملOf Nonlinear Schrödinger Equations
The authors suggest a new powerful tool for solving group classification problems, that is applied to obtaining the complete group classification in the class of nonlinear Schrödinger equations of the form iψt +∆ψ + F (ψ,ψ ∗) = 0.
متن کاملNumerical Continuation for Nonlinear SchrÖdinger Equations
We discuss numerical methods for studying numerical solutions of N-coupled nonlinear Schrödinger equations (NCNLS), N = 2, 3. First, we discretize the equations by centered difference approximations. The chemical potentials and the coupling coefficient are treated as continuation parameters. We show how the predictor–corrector continuation method can be exploited to trace solution curves and su...
متن کاملA Chebychev propagator for inhomogeneous Schrödinger equations.
A propagation scheme for time-dependent inhomogeneous Schrödinger equations is presented. Such equations occur in time dependent optimal control theory and in reactive scattering. A formal solution based on a polynomial expansion of the inhomogeneous term is derived. It is subjected to an approximation in terms of Chebychev polynomials. Different variants for the inhomogeneous propagator are de...
متن کاملAnalysis for Nonlinear Schrödinger Equations with Potential
We justify the WKB analysis for the semiclassical nonlinear Schrödinger equation with a subquadratic potential. This concerns subcritical, critical, and supercritical cases as far as the geometrical optics method is concerned. In the supercritical case, this extends a previous result by E. Grenier; we also have to restrict to nonlinearities which are defocusing and cubic at the origin, but besi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Numerical Mathematics
سال: 2022
ISSN: ['1873-5460', '0168-9274']
DOI: https://doi.org/10.1016/j.apnum.2022.04.011